If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+15=195
We move all terms to the left:
4x^2+15-(195)=0
We add all the numbers together, and all the variables
4x^2-180=0
a = 4; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·4·(-180)
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{5}}{2*4}=\frac{0-24\sqrt{5}}{8} =-\frac{24\sqrt{5}}{8} =-3\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{5}}{2*4}=\frac{0+24\sqrt{5}}{8} =\frac{24\sqrt{5}}{8} =3\sqrt{5} $
| 5x-5=-1x+7 | | 7+3a=8a-3 | | (x)=4x+6 | | 8x-20+40=180 | | 6x−2=4x−8 | | -28-6r=8r | | .4.5-1.5(6m+2)=6 | | 4x+65=8x-(12x-9) | | -8b=-9b-9 | | -3m=-7-10m | | 5x+6x+2x=-45 | | 7/b+5=10/2 | | 8x+51=-21-12x | | 25-5=5x+20 | | 2(x+1.21)=3.1 | | 19x-3(x-6)=82 | | (3x+5)=(5x-1) | | -7(-7r-2)+4=-342+9r | | 29-5x=-6+6(-2+7) | | 2p-55=90 | | 24r=161 | | 10u+14 = 13 | | (0)=5x-3 | | 8c-6=7c-9 | | 3x-10+x+15+25=x | | 3x-6+126=180 | | 2w-2/5=9/5w+1 | | -5/2(w21)=15 | | 29-5x=-5x | | 8q-2=10 | | −12v=−60 | | 5/6=u-5/9 |